De plus le triangle OEN est équilatéral donc OE = EN.
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en appliquant (2) : EN = EK + KA + AN donc OE = - + KA+
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tang(BAE) = tang(30) = B % donc OB = OE-ABtang(30) = OE - 7
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OBL triangle rectangle en B donc sin(60) = % donc OB = OLsin(60) = OL?
En remplagant OB dans 1’équation précédente on obtient :
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Or d’apres Thales Ol — OM don T =% donc OK = P
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M D or tang(30) = KA car ALK triangle rectangle en K donc KA = v/3KL
Soit a la longueur du c6té du triangle équilatéral et h sa hauteur. d KA — OE 2 AB. E 1 ¢ d 3 btient -
(EN) la droite // a (1J) passant par A. Les angles du triangle OEN valent tous 60° et one T T2 + V3 n remplagant dans (3) on obtient :
le triangle est donc équilateral. 2 2AC .
M le milieu de [1J] donc (OM) L (LJ). OF = “5AB+ —7= et en appliquant (1) :
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(1J)//(EN) donc on peut appliquer Thales en O : % _ % _ % donc AD + AB + AC = —a = h ce qu’il fallait démontrer.
donc OE h—-AD 2EK Il existe une autre démonstration basée sur les aires et plus rapide. Celle ci est le fruit de mon imagination !
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ABE triangle rectangle en B donc : sin(60) = AR
AC

ACN triangle rectangle en C donc : cos(30) = AN
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